Chapter 2

Normed Linear Spaces

2.1 The Norm Topology

In order to do analysis on vector spaces, we need to endow these spaces
with a topological structure which is compatible with the linear struc-
ture. This is made precise in the following definition.

Definition 2.1.1 A topological vector space is a vector space V
that is endowed with a Hausdorff topology such that the maps

(z,y) eVxVirz+yeV and (o,z) EFxV i az eV

are continuous, each product space being endowed with the appropriate
product topology using the given topology of V and the usual topology on
the scalar field F (=R or C). R

We will restrict our attention to a class of topological vector spaces
called normed linear spaces, which we now proceed to define.

Definition 2.1.2 A norm on a vector space V is a function ||.|| : V —
[0,00) such that

(i) ||z|| = O %f, and only if, z = 0O;

(ii) |laz|| = |a|||z|| for every & € F and every z € V;

(iii) (Triangle Inequality) for every z and y € V, we have

le+yll < llzll + ). ® (2.1.1)

Associated to a norm on a vector space V, we have a metric defined
by
d(z,y) = llz -yl
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It is immediate to verify that this defines a metric. The triangle inequal-
ity (2.1.1) yields the inequality (1.2.1) (which is also called by the same
name) via the relation

-z = (z-y)+(y—2).

(Thus, the norm of a vector is its distance from the origin and is a
‘generalization of the notion of the length of a vector, as we know it, in
Euclidean space.)

Thus, V is endowed with a metric topology. In this topology, a
sequence {z,} converges to z in V if, and only if

l2n — 2|l — 0.

Now if {z,} and {y,} are sequences in V and {a,} a sequence in F,
we have, for z,y € V and a € F,

|(zn +yn) — (= + y)” < |zn — 2| + |lyn — 9l
lonzn —az|| < |on|l|zn — z|| + |an — of|z]|.

Thus, if z, — =z, y» — y in V and if a, — a in F, it immediately
follows that z,, + ¥y, — = + y and that a,z, — az in V. Thus addition
and scalar multiplication are continuous and so V' becomes a topological
vector space with this metric topology.

Definition 2.1.3 A normed linear space is a vector space V endowed
with a norm. The metric topology induced by the norm is called its norm
topology. B

The norm itself is a continuous function with respect to this topology.
Indeed, if z and y € V, then, since z = (z—y)+y, the triangle inequality
yields

lzll < llz =yl + llyl

which we rewrite as
lzll = llyll < [z - yll-
Interchanging the roles of x and y we finally obtain
|zl = llyll | < llz -yl
from which the continuity of the function z € V — ||z| € R follows.

Definition 2.1.4 A normed linear space is said to be « Banach space
if it i8 complete under the norm topology. M
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2.2 Examples

We will now look at several examples of normed linear spaces. Essen-
tially, they can be classified into three groups - finite dimensional spaces,
sequence spaces and function spaces. In the examples that follow, we
will set F = R. The reader can easily make the necessary changes to
cover the case when R is replaced by C.

Example 2.2.1 We can consider R as a vector space over itself. The
map € R — |z| is easily seen to define a norm which generates the
usual topology on R. Since R is complete, it thus becomes a Banach
space. B

Example 2.2.2 Let 1 < p < o0. For z = (1, Z3,...,zx5) € RY, define

Izll, = (i Imilp)%-

i=1

It is easy to see that conditions (i)-(ii) of Definition 2.1.2 are verified.
We will presently prove the triangle inequality and thus R with the
norm ||.||, will become a normed linear space. It is, again, immediate to
see that a sequence {z(™} in R" converges in this norm to z € R¥ if,
and only if, for every 1 < i < N, we have 2™ — z;. Similarly, {z(™} is
Cauchy in this norm if, and only if, for every 1 < ¢ < N, the sequences
{xE"’) } are Cauchy in R. Since R is complete, it now follows that RV
is also complete with respect to each of the norms ||.||, defined above.
Thus for each of these norms, RY is a Banach space. B

We now proceed to prove the triangle inequality for each of the norms
||.|lp for 1 < p < oo.

Definition 2.2.1 Let 1 <p<oo. If p=1, set p* = o0 and vice-versa.
Otherwise, let 1 < p* < oo be such that
1 4 1
p p
The number p* defined thus is called the conjugate exponent of p. B

=1 (2.2.1)

Lemma 2.2.1 Let 1 < p < 0o. Let p* be its conjugate exponent. Then,
if a and b are non-negative real numbers, we have

PR/ < %+ z%' (2.2.2)
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Proof: Let t > 1 and consider the function
f@)=k(t-1)-tF+1

for some k € (0,1). Then f'(t) = k(1 — t*~1) > 0 since k < 1. Thus, f
is an increasing function on [1,00) and, since f(1) = 0, we immediately
deduce that

th <k(t-—1)+1 (2.2.3)

fort>1and 0 <k < 1.

Now, if a or b is zero, then (2.2.2) is obviously true. So let us assume
that a > b > 0.

The inequality (2.2.2) now follows by settingt = a/band k = 1/p in
(2.2.3) and using the definition of p*. B

Lemma 2.2.2 (Hoélder’s inequality) Let 1 < p < oo. Let p* be its
conjugate ezponent. Then, for z,y € RY,

N
> lziwl < llzlplyllye- (2.2.4)
i=1

Proof: Since the result is trivially true for z = 0 or y = 0, we can as-
sume, without loss of generality, that both z and y are non-zero vectors.

Then, set
p.

m.p %
S R
E: IylE:

for a fixed 1 < i < N. Then (2.2.2) yields

iyl 1=l 1 |y
lzlpllyll: — pllzlz -~ 2* ||y|fE:

Summing over the range of the index i, we get
N
> i=1 |Tiyil 1
lzllpllyles ~ P
which proves (2.2.4). B

1
+5; =1

Lemma 2.2.3 (Minkowski’s Inequality) Let 1 < p < oco. Let z,y €
RN. Then

lz+¥yll, < llzllp + ll¥llp- (2.2.5)
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Proof: The proof is obvious if p = 1. Let us, therefore, assume that
1 < p < co. Let p* be the conjugate exponent. Then,

N A= N ip—
Y le+wlP < XL |z 4 vilP e + iy e + %"pl il
o\ ¥
< (el + lyls) (T los + wsl ")

by a simple application of Holder’s inequality (2.2.4). But (p—1)p* =p
by definition and so,

Iz +ylip < (s + lyllp)lz + ylIE/7".

Since the result is obviously true when z + y = 0, we can assume, with-
out loss of generality, that 4+ y # 0 and so, dividing both sides of the
above inequality by ||z + y||”/?" and using, once again, the definition of
p*, we get (2.2.5).

Since Minkowski’s inequality is exactly the triangle inequality for the
norm .||, our proof that RV is a Banach space for each of these norms
is complete.

Remark 2.2.1 The inequalities of Holder and Minkowski are clearly
true when z and y € CN and so CV is also a Banach space for each of
the norms ||.||p, 1<p<oo. B

Remark 2.2.2 When p = 2, we have p* = 2 as well. In this case Holder’s
inequality is known as the Cauchy-Schwarz inequality. The inequal-
ity (2.2.2), in this case, turns out to be the familiar inequality relating
the arithmetic and geometric means of two positive real numbers. The
norm ||.||2 is also called the Euclidean norm since it corrsponds to the
usual Euclidean distance in RV. l

Example 2.2.3 For = = (z1,...,zn) € RV, define

Izllo = max |zl
It is easy to verify that this also defines a norm on R¥, Again con-
vergence and the Cauchy criterion hold if and only if they hold compo-
nentwise and so R" is a Banach space for this norm as well. Again all
these assertions hold for CV as well. It is immediate to see that Holder’s
inequality is true when p =1 as well. B
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Remark 2.2.3 The spaces RV (or CV when the base field is C) with the
norm ||.||,, where 1 < p < oo are usually denoted by Ei,v in the literature.
|

Remark 2.2.4 The notation ||.||o for the norm defined in Example 2.2.3
can be ‘justified’ as follows. Let z € RV. Assume that the maximum
for |z;| is attained for a single index, say, i9. Then,

e \?
lell = foal |1+ 3 (12

itio
Thus, since |z;|/|zi,| < 1 for i # ip, we get that
Izllp = llZloo
when p — co. B
Example 2.2.4 We now consider sets of real (or complex) sequences
1= (Y ey Ty o o

Let 1 < p < 0o. We define the space

¢, = {xl qu,-|9<oo}.
=1

We define vector addition and scalar multiplication (over the correspond-
ing field) componentwise, i.e. if z = (z;) and y = (y;) are sequences in
¢, and if « is a scalar, we set

z+y = (z;+y) and oz = (az;).

We also define .
00 ?
lzll, = (ZI%I”) :

i=1

We will prove the triangle inequality for ||.||, (which will also simulta-
neously show that £, is closed under vector addition and hence that it
is a vector space). Since properties (i) and (ii) of Definition 2.1.2 are
obvious, it will follow that ||.||, defines a norm on £,.
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Let z and y € £,. Then, for any positive integer N, we-have .
1 1P
Sl < [(SX k) + (S i)’
< li=llp + llyllpl?

using Minkowski’s inequality (2.2.5) for the integer N. Thus, since N
was arbitrary, we deduce that

o o]

Y lai+wlP < (lzllp + lyll? < oo

i=1

which shows that z + y € £, and also proves the triangle inequality for
Il 8

Remark 2.2.5 The triangle inequality

|z + 'y”p < ||33||p + ||y||p

for z and y € ¢, is again referred to as Minkowski’s inequality. We can
also prove Holder’s inequality: if x € £, and y € {,» where p* is the
conjugate exponent, then

oo

Ell'iyi| < ”x"p”y”p‘-.

i=1
Proposition 2.2.1 Let 1 < p < 0o. Then £, is a Banach space.

Proof: We just need to prove the completeness of the space. Let {a:(“)}
be a Cauchy sequence in £p, i.e. given € > 0, there exists N such that

oo
Z|x£m) - x?) P < e (2.2.6)
i=1

for all m > N, | > N. Thus, it is clear that for each fixed subscript ¢,
the sequence {:1:1(-")} is Cauchy in R (or C, as the case may be). Thus,
there exists x; such that mgn) — z; for each 7. Set

T = (21,22 ey Tiyoes)e

We will first show that z € £,. Since {z(™} is a Cauchy sequence, it
is bounded. Thus, there exists a C' > 0 such that '

lz™|2 < €, forall n.
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Let k be any fixed positive integer. Then,

k
M leMP < ¢
i=1
which implies that
k
Zlmd” < C.
=1

Since k is arbitrary, this shows that
(e o]
o lzfP < € < oo
i=1

This shows that = € £,.
Now, for any positive integer k and all m,l > N, it follows from
(2.2.6) that

k
legm) —:Jr:gl)lp < €.
i=1

Passing to the limit as [ — oo, we get that for any m > N and for any
k,

k
o™ -z < e
i=1
Since k is arbitrary, we deduce that for m > N,
2™ —z|p < e
i.e. ™ — z in ¢p. This completes the proof. B

Example 2.2.5 Set

i {m=(xi)| - |m=-.|<+oo}

1<i<oo
i.e. the space of all bounded real (or complex) sequences. This is clearly
a vector space under componentwise addition and scalar multiplication.
Define

lzlloo = sup |al.
1<i<oo
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This makes £, a Banach space (check!). B

Remark 2.2.6 Once again, Holder’s inequality holds for p = 1 as well.
|

Remark 2.2.7 For those readers who are acquainted with measure the-
ory, the spaces .‘.’pN and £, for 1 < p < oo are particular cases of the
Lebesgue spaces LP(u) where {X,S, 1} is a measure space. In the case
of E{,\’, we have X = {1,2,...,N} and in the case of £, we have X = N,
the set of all natural numbers. In either case, the o-algebra is the col-
lection of all subsets of X and the measure p is the counting measure.
We will study LP spaces in detail in Chapter 6.

Our final example is that of a function space.

Example 2.2.6 Let C[0, 1] denote the set of all continuous real valued
functions on the closed interval [0, 1]. This becomes a vector space under
the operations of addition and scalar multiplications defined pointwise,
i.e.

(f+9)(x) = f(z)+g(z) and (af)(z) = af(z)
for f and g € C[0,1],« € R and for z € [0,1]. Define

I = sup 11 (= — lf(:c)l)-

z€[0,1 z€(0,1] _

This is well defined since [0, 1] is compact and so every continuous func-
tion is bounded and attains its maximum. The verification that this
defines a norm on C|0, 1] is routine and is left to the reader.

Let {fn} be a Cauchy sequence in C[0, 1]. This implies that for every
e > 0, there exists a positive integer N such that, for all z € [0, 1] and
for all n > N and m > N, we have

|fn(z) — fm(2)| < e (2.2.7)

Thus the pointwise sequences { f»(z)} are all Cauchy and hence conver-
gent. Define

f(z) = ,}L‘Eofﬂ("") -

We will show that the function f thus defined is in C[0,1] and that
[|fn — fll = 0. This will show that C[0,1], with the given norm, is a
Banach space.
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Let € and N be as above. Then, keeping n > N fixed and passing
to the limit as m — oo in (2.2.7), we get

[fa(z) — f(z)] < € (2.2.8)

for all n > N and for all z € [0,1]. Fix a point zg € [0,1]. Since fx is
continuous, there exists § > 0 such that for all |zg — y| < §, we have

|fv(zo) — Fn(y)| < e

Thus, if |zg — y| < §, we get, using the above inequality and also the
inequality (2.2.8),

|F(zo)—F(y)| < |f(zo)—fn(zo)l+|fn(zo)—Fn(W) |+ N (y)—F(y)l < 3e.

This proves that f is continuous and from (2.2.8), we see that || f,— f|| —
0.m

Remark 2.2.8 The convergence described in the preceding example is
what is known in the literature as uniform convergence. The norm is
often referred to as the ‘sup-norm’. B

We conclude this section by showing a standard method of producing
new normed linear spaces from existing ones.Let V be a normed linear
space and let W be a closed subspace of V, i.e. W is a linear subspace
of V and is closed under the norm topology. We define an equivalence
relation on V by

z~y Srx—yeW

The equivalence class containing a vector € V is called a coset and is
denoted as z + W. It consists of all elemnents of the form z + w where
w € W. The set of all cosets is called the quotient space and is denoted
V/W. Addition and scalar multiplication on V/W are defined by

(z+W)+@y+W) = (z+y)+W and a(z+W) = az+W.

If z ~ 2’ and y ~ 9/, then, clearly, z + y ~ 2’ + ¢’ and ax ~ az’, since
W is a linear subspace of V. Thus, addition and scalar multiplication
are well defined. Thus the quotient space becomes a vector space. On
this, we define
= inf ;
|z +Wllyw = inf |lz+w]

In other words, the ‘norm’ defined above is the infimum of the norms of
all the elements in the coset and so, clearly, it is well defined.
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Proposition 2.2.2 Let V be a normed linear space and let W be a
closed subspace. Then, ||.|lv/w defined above is a norm on the quotient
space V/W . Further, if V is a Banach space, so is V/W.

Proof: Clearly ||z+W|y/w > 0forallz € V. Ifz4+W = 0+W in V/W,
we have z € W; then —z € W ands0 0 < |lz+W|yw < |lz+(-2)|| =0
and so ||z + W|lyyw = 0. Conversely, if ||z + W|y,w = 0, then, by
definition, there exists a sequence {w,} in W such that ||z + w,| — 0.
This means that w, — —z in V and, since W is closed, it follows that
—z € W and so x € W as well. This means that z ~ 0, i.e. z+ W is
the zero element of V/W.

If o # 0, then az + w = oz + w') where w' = o™ 'w € W. From
this it is easy to see that |lax + W/ly,w = |alllz + W|lvyw. The case
a = 0 is obvious.

Finally, we prove the triangle inequality.

inf{||z + y + w|| | w € W}
inf{llz + y + w + || | w,w’ € W}

inf{||z + w|| + ||y + «'|| | w,w' € W}

inf{||lz + w| | w € W} +inf{}ly + v'|| | w' € W}
lz + Wllyw + lly + Wllyyw-

lz +y+ Wllvw

IhIA I

Thus, V/W is a normed linear space. Now assume that V' is com-
plete. Let {z,, + W} be a Cauchy sequence in V/W. Then, we can find
a subsequence such that

1
[(Zn, + W) = (Znyy, + W)llvyw < o (why?)
Now choose yx € Zn, + W such that |lyx — Yk+1]l < 1/2%. Then the
sequence {yx} is Cauchy (why?) and so, since V is complete, yr — y in

V. Thus

[(@ny + W) = (y+Wllvyw < llye—oll — 0.

Thus, the Cauchy sequence {z, + W} has a convergent subsequence
{zn, + W} and so the Cauchy sequence itself must be convergent and
converge to the same limit (why?). Hence V/W is complete. B

2.3 Continuous Linear Transformations

An important aspect of functional analysis is to study mappings be-
tween normed linear spaces which ‘respect’ the linear and topological
structures. We make this notion precise in the following definition.
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Definition 2.3.1 LetV and W be normed linear spaces. A linear trans-
Jormation T : V — W is said to be a continuous linear transforma-
tion or, a continuous linear operator, if it is continuous as a map
between the topological spaces V and W (endowed with their norm topolo-
gies). If W is the base field, then a continuous linear transformation is
called a continuous linear functional. B

Definition 2.3.2 A subset of a normed linear space is bounded if it
can be contained in a ball. M

The following proposition gives an important characterization of con-
tinuous linear transformations.

Proposition 2.3.1 Let V and W be normed linear spaces and let T :
V — W be a linear transformation. The following are equivalent:

(i) T is continuous.

(ii) T is continuous at 0.

(iii) There ezists a constant K > 0 such that, for all z € V,

IT()llw < Klzlv (2.3.1)

where ||.||v and |.|w denote the respective norms in the spaces V and

w.
(iv) If B={z € V | ||z|ly < 1} is the (closed) unit ball in V', then T'(B)
s a bounded set in W.

Proof: (i) & (ii) If T is continuous, then, clearly, it is continuous at
0 € V. Conversely, let T' be continuous at 0 € V. Let z € V be arbi-
trary and let z, — zin V. Thenz,—2 — 0in V and so, T'(z,—2z) — 0
in W, i.e. T(z,) — T'(z) in W. Thus, T is continuous.

(ii) < (iii) If T is continuous at 0 € V, there exists a § > 0 such that
lzllv < & implies that ||T'(z)||lw < 1. For any z € X, set y = 5 il —Z 80
that ||y|lv = §/2 < § and so | T(y)|lw < 1. By linearity, it follows that

IT@ly < ey

which proves (2.3.1) with K = 2/4. Conversely, if (2.3.1) is true, then
whenever z,, — 0 in V, it follows that T(z,) — 0 in W, i.e. T is con-
tinuous at 0.
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(iii) & (iv) By virtue of (2.3.1), it follows that ||T'(z)|lw < K fer all
z € B. Thus, T'(B) is bounded in W. Conversely, if T'(B) is bounded in
W, there exists a K > 0 such that ||T'(z)|lw < K for all z € B. Now, if
0 # z € V is arbitrary, set y = z/||z||. Then ||T'(y)|lw < K from which
(2.3.1) follows, by linearity. B

Remark 2.3.1 Continuous linear transformations are also known as
bounded linear transformations since they map bounded sets into
bounded sets. B

The above proposition inspires the following definition.

Definition 2.3.3 Let V and W be normed linear spaces and let T :
V — W be a continuous linear transformation. Let B be the closed unit
ball in V.. The norm of T, denoted ||T||, is given by

17| = sup 1T(z)||lw. & (2.3.2)

The following proposition gives alternative characterizations of the
norm of a continuous linear transformation.

Proposition 2.3.2 Let V and W be normed linear spaces and let T :
V — W be a continuous linear transformation. Then

17| sup{[|T(z)|lw | l|lzllv = 1}
sup{[|IT(z)llw/llzllv | 0 #z € V}

= inf{K >0| ||T(z)|lw < Klz|lv forall z € V}.

Proof: Let us set

= sup{|[T(z)llw | llzllv =1},
sup{||T(z)||w/llz|lv | 0 # z € V} and
inf{K >0 | |T(z)|lw < Klz|lv forall ze V}.

«a
B
v

Clearly, o < 3. If z is a non-zero vector in V, then z/||z||y has unit
norm and ||T(z)||w/||z|lv = |T(z/||z||v)||lw. This shows that we also
have # < a. If K > 0 is any number in the set defining v, then it follows
immediately that § < K and so, a fortiori, we have # < «. Now, we
also have that ||T'(z)||lw < B|lz||v for all x € V and so, by definition,
v < B. Thus, we have

a=f =%
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Clearly ||T'|| 2 « by definition. If K is in the set defining v, then, for
all z € V such that ||z||y < 1, we have |T(z)|lw < K and so ||T|| < K.
Thus, we get that ||T|| < v = a. Thus we get that

IT| = a=p8=~18

Corollary 2.3.1 IfV and W are normed linear spaces and if T : V —
W is a continuous linear transformation, then

IT()lw < ITllllzllv (2.3.3)

forallze V. R

Let V and W be normed linear spaces. Let us denote by L(V,W),
the set of all continuous linear maps from V into W. If T} and T are
such maps, let us define 77 + T5 by

(Tl + Tz)(m) = T (:t) + Tz(a:)
for all z € V. Clearly, T} + T5 is also a linear transformation. Now,

I(T1 + T2)(z)[lw < [ITa(2)llw + | T2(@)lw < (IT2]l + [ T2])llzllv

by virtue of the triangle inequality and the above corollary. Thus, it
follows that T + T5 is also a continuous linear transformation and that

1Ty + T2l < |ITall + (IT2]-

Similarly, if T is a continuous linear transformation and if « is a scala.,
we define
(@T)(z) = oT(z)

for all x € V. It is then easy to see that o7 is also continuous and that
leT]| = |af|T].

The zero element of £(V, W) is the trivial map which maps every element
of V into the null vector of W. The element —7T is defined by (-T')(z) =
—T(z). Thus, L(V,W) is a vector space; in fact, it is a normed linear
space for the norm of a continuous linear transformation defined above.

Proposition 2.3.3 Let V and W be normed linear spaces. If W is
complete, then L(V,W) is also complete.
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Proof: Let {T,} be a Cauchy sequence in L(V,W). Then, given € > 0,
we can find a positive integer N such that, for all m and n > N, we
have

|Tn — Tm|| < e.
Let z € V. Then,

ITn(z) = Tm(@)llw < [T — Tmlllizllv

and so it follows that the sequence {T},(z)} is Cauchy in W. Since W is
complete, this sequence is convergent. Let us define

Tiz) = r}an}oT“(m)

Clearly, the map = — T(z) is linear. We will show that it is continuous
and that ||7, — T'|| — 0. This will complete the proof.

Since the sequence {1} is Cauchy, it is bounded, i.e. there exists
M > 0 such that, for all positive integers n, we have |T,|| < M. Now,
since for any =z € V, we have ||T,(z)|lw < |Tullllzllv < M|z|v, it
follows, on passing to the limit as n — oo, that, for all z € V,

IT(z)llw < M|z|v.

Thus, T is continuous and so T' € L(V,W).

Let € > 0 and let IV be as defined earlier by the Cauchy property of
the given sequence. Let B be the closed unit ball in V. For all z € B,
we have

ITn(z) = Tm(z)llw < [T — Tl < e

Keeping n fixed and letting m tend to infinity, we get
1T (z) = T(z)llw < €

for all z € B. This shows that, for n > N, we have ||T, — T|| < ¢, i.e.
T, — T in L(V,W). This completes the proof. B

In particular, since the scalar field is a Banach space over itself (cf.
Example 2.2.1), the set of all continuous linear functionals £(V,R) (or,
L(V,C), as the case may be) is always a Banach space.

Definition 2.3.4 Let V be a normed linear space. The space of all
continuous linear functionals on V is a Banach space and is called the
dual space of V. It is denoted by V*. B
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Another particular case is when W = V. In this case we write
L(V) for the space of all continuous linear operators instead of L(V, V).
This space is Banach if V' is Banach. On this space, we have a third
operation (after addition and scalar multiplication) namely, composition
of operators: if T3 and 75 are continuous linear operators, we define 7775
by

(M T2)(z) = Ti(Ta(z)).

Now, for any z € V, we have
IBT)@Iy < ITITGEI < 1Ty
Thus, T1T5 is also a continuous linear operator and, further,
I T2| < Tl 72]- (2.3.4)

Further, multiplication is a continuous operation. Indeed, if T, — T
and T, — T" in L(V'), we have

ITnTy, = TT'|| < Tl Tn — Tl + 1T NI T — TI.

Since ||75|| is bounded independent of n, it follows that T, T, — TT".
Finally, if I is the identity mapping i.e. I(z) = z for all z € V, we have

M1l = 1.

Definition 2.3.5 A Banach space V on which we have a multiplication
operation (z,y) € VXV — zy € V such that addition and multiplication
make it a ring and such that

eyl < llzllllyll and |[1f] = 1

where 1 is the multiplicative identity in V, is called a Banach algebra.

|
Thus, £L(V), where V is a Banach space, is a Banach algebra.

Let us now study various examples of continuous linear transforma-
tions.

Example 2.3.1 Any linear transformation T : RN — RM is given by an
M x N matrix. Assume that RV is the space I.’{V . Then, for any norm
on RM | any linear transformation is continuous. Let {e1,...,en} be the
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standard basis of RY (cf. Example 1.1.2). If z = (zy,...,2x) € RV,
then z = Eilxiei. Then T'(z) = N z;T'(e;). Thus,

=1

N
IT@)lrne < K lail = Kllz]

i=1

where

K = max |T(e;)}pe. ®

Example 2.3.2 Let a;,...,ay be scalars. For z = (z1,...,zx) € RY,
define

N
f(:!?) = Z a;T;.
i=1
Then f is a linear functional on R which is continuous if RN = ¢). B

We will see later that these transformations and functionals are con-
tinuous for any norm defined on RV,

Example 2.3.3 Let z = (z;) € £3. Define

T(z) = (“"‘ i B )

1 3 2 Jorrey ?: ]
Then, since
Ty

>

i=1

2 (o ]
< Zla:,rl2 < o0,
i=1

we have that T is a continuous linear operator on £; and that ||T|| < 1.
The map T is not onto. In fact, the range of T consists of all square
summable sequences (y;) such that

(s <}
Z£2|y,-|2 < oo. B

=1

Example 2.3.4 Let 1 < p < oo and let p* be its conjugate exponent.
For z € £, and y € £+, define

fu@) = )z
=1
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Then, by Holder’s inequality, we have

|f‘y Z lziys| < ”x”P

Thus f, defines a continuous linear functional on ¢p and

Ifll <

We will see later that, when 1 < p < 00, all continuous linear functionals
on £, occur only in this way and that the last inequality is, in fact, an
equality. @

Example 2.3.5 Consider an infinite matrix (a;;)§5_;. This can be used
to define a linear mapping on ¢, as follows. Let z = (z;) € £,. Define a

sequence A(x) by
Alz); = Z a;;T;.

Showing that A defines a continuous lmea.r map of £, into itself is usually
a non-trivial problem and some examples are given in the exercises at
the end of this chapter. We now give an example (due to Schur).
Assume that a;; > 0 for all < and j. Assume further there exists a
sequence {p;} of positive real numbers and # > 0 and v > 0 such that

oo

Y aipi < Pp;

i=1
for all 5 € N and also such that

[o o]
Y aip; < pi
=1

for all i € N. Then A € L£(¢2) and ||A||? < Br.
To see this, let z = (z;) € £5. We write

\/GTJ“’J
5

Applying the Cauchy-Schwarz mequahty, thls yields

D @i = Z\/aT\/p—J

o ¢]

00 2
al- mn

AP < (3 asms 2:—"1'0,3"
J

j=1 j=1
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It follows from the hypotheses that
aijlz;)?
=1 ’wli l:il -JL_J_JL
B,
V521 s Qe BiPi
.|2
v Z?.;1 E;Lﬁpj

g
B|zl|3

221 |A($)i|2

IA

IhIA

which establishes the claim.
An interesting particular case is that of the Hilbert matriz. Set

1
a; = ————
A |
for 0 <i,7 <o0. Set p; =1/4/i+ % Since the matrix is symmetric, it
suffices to check one of the two conditions. Now,

(s <} 1

=0 i+ L+ 3 fi+d

o0 @ijPi = ),

o0 dx
= JB (@+i+1)Vz

s 2f°° dt
- 0 t2+j+rj

— m
Vits
Thus, by Schur’s test, the matrix defines a continuous linear operator A

on ¢ whose norm is less than, or equal to 7. (In fact, it has been shown
by Hardy, Littlewood and Polya that the norm is exactly 7.) B

Example 2.3.6 (Cesaro Operator) Let z = (z;) € £, where 1 < p < oco.

Define
Z1+ "+ ZTn

(T(e)n = 25

We show that T' € L(£,) and that

p
T| < —.

Indeed,
< lz1| + -+ + |2n]

IT(@)al .
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Set A, = |z1|+:-+]|zn| and o, = A, /n, for n > 1 and set zg = Ag = 0.
Then

o — 2108 an| = of — 7210k (now — (n = L)an-1)
= (1-2&)oh+ 2t a0y

= (1-7%)oh+ 522D (@)

Recall that p/(p—1) = p*, the conjugate exponent of p. Thus by Lemma
2.2.1, we get

oh - 2ok Neal < (1- %)+ Ol (2102 1 102 )

= ;Hlln-1)of_; —nof].

Fix a positive integer N. Then summing both sides over n running
between 1 and N, and noticing that the right-hand side is a telescoping
sum, we get

o ——— Y o lz,| < ———a& < 0.
r;l n p—lz n Inl p— N

n=1
By an application of Holder’s inequality, we now deduce that

p=1

N P N p N P N %
Do < === o el < —:—1( a:;) (Z |mn|p)
n=1 P n=1 P n=1 n=1

Dividing both sides by (E,‘Ll ok )(P=1)/P) | which.is strictly positive for
non-zero r, we get

N x b N %
(Z aﬁ) < gl (Z |$nlp) :
n n=1

=1

Since N was arbitrarily chosen, we deduce that

p
T <
IT@ly < 25
which establishes our claim. (In fact, Hardy, Littlewood and Polya also
show that ||T'|| =p/(p—1).) B

1l
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Example 2.3.7 (Volterra integral operator) Let K : [0,1] x [0,1] = R
be a continuous function. For f € C[0,1] and s € [0, 1], define

T(f)(s) = fo "K(s,t)f()dt.

Since K is continuous on the compact set [0, 1] X [0, 1], it is bounded and
uniformly continuous. Assume that, for all s and ¢ in [0, 1], we have

K (s,t)| < k.

Further, given £ > 0, there exists § > 0 such that, whenever |s; —s3| < 6,

we have
|K(31,t) —K(Sg,t)l < €

for all t € [0,1], by virtue of the uniform continuity. Without loss of
generality, we can assume that § < e. Thus,

T()e)-T()s2) = [ (Ko t)-K(oat)f Ot [ K(sait) (0.

If ||f|| denotes the norm of f € C[0,1] as defined in Example 2.2.6, we
have

IT(f)(51) = T(f)(s2)] < ellfllsy+oullfll < (X +r)Flle

whenever |s; — s3] < 4. This shows that T'(f) is a continuous function.
The mapping T being clearly linear, it thus defines a linear operator on
C[0,1]. Further,

IT(£)() < wlflls < =[£Il

Thus T is a continuous linear operator on C[0,1] and ||T|| < x. W

So far, we have been seeing examples of continuous linear transfor-
mations. We now give an example of a linear transformation which is
not continuous.

Example 2.3.8 Consider the space C[0, 1] of continuous functions on
[0, 1] which are continuously differentiable on (0, 1) and whose derivatives
can be extended continuously to [0,1]. This is a subspace of C[0,1]. Let
both these spaces be endowed with the ‘sup-norm’ (cf. Example 2.2.6).
Then, the map T : C![0,1] — C[0,1] defined by T(f) = f’, where f’
denotes the derivative of f, is not continuous. To see this, consider the



2.8 Continuous Linear Transformations 47

sequence of functions {f,} defined by f,(t) = t" for n > 1. Then, it
is easy to see that ||f.|| = n while ||f,|| = 1. Hence there can be no
constant C > 0 such that |T'(f)|| < C||f|| for all f € C'[0,1]. Thus, T
is not continuous. W

Definition 2.3.6 Let V' be a normed linear space and let T € L(V) be
a bijection. If T~! is also continuous, then T is said to invertible or
an isomorphism. B

Note: When dealing with normed linear spaces, the word isomorphism
is understood in the topological sense: not only is it an isomorphism in
the usual algberaic sense i.e. it is linear and is a bijection, but it also
implies that both the mapping and its inverse are continuous.

Definition 2.3.7 Two norms defined on the same vector space are said
to be equivalent if the topologies induced by these two norms coincide.
|

Proposition 2.3.4 Let V be a vector space and let |.||1) and |.||2) be
two norms defined on it. The two norms are equivalent if, and only if,
there exist two constants Cy > 0 and Cy > 0 such that, for all z € V,
we have

Cillzllgy £ llzlle) £ Callzllqy-

Proof: The topologies induced by the two norms coincide if, and only
if, the identity mapping

I:{V, I} = Vil }

is an isomorphism. This is equivalent to saying that there exist two
constants K; > 0 and K5 > 0 such that

lzll@ < Kallzllq) and flzflqy < Killzlle)

for all z € V. This proves the proposition on setting C; = K| ! and
Co=K;. R

Example 2.3.9 Let z = (z1,...,zn) € RN (or CV). Then, clearly,

Izllo < llzlli < Nlizlloo.

Thus these two norms are equivalent and the topologies induced on RY
(respectively, C) by the norms ||.||; and ||.)« coincide. It is a simple
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matter to check that the topology induced by ||.|« is none other than
the product topology on R¥ (respectively C"V) when R (respectively C)
is given its usual topology for every component. ll

We will, in fact, now prove a much stronger result.

Proposition 2.3.5 Any two norms on a finite dimensional vector space
are equivalent. '

Proof: Let V be a finite dimensional normed linear space with dimen-
sion N. We will show that V is isomorphic to the space E{V . Thus, given
two norms on V/, it will be isomorphic to £} for each of those norms and
from this we will deduce the equivalence of the norms.

Step 1. Let {ej,..,en} be the standard basis of ¢). Fix a basis
{v1,...,un} for V. Define T : é’{" — V by setting T'(e;) = v; for all
1 < i < N and then extending T linearly to all of ff'r . Clearly T is a
bijection and an identical argument as in Example 2.3.1 shows that T
is continuous.

Step 2. Assume, if possible, that 7! is not continuous. Then the
continuity must fail at 0 and so we can find a sequence {y,} in V and
a real number &£ > 0 such that | T (y,)|l1 > & > 0 while y, — 0. Set
Zn = Yn/|IT " (yn)|l1- Then, 2, — 0 and ||T~(2,)|l1 = 1. Now, the set

B = {zet)||azlh < 1}

is compact. To see this, observe that B is a closed set and is contained in
the set II)Y , [—1, 1], which, being the product of compact sets, is compact
in the topology induced by the norm ||.||, and hence, in the topology
induced by the norm |.||; as well (cf. Example 2.3.9). Thus, B is also
compact. Consequently, it is also sequentially compact and so, there
exists a subsequence {z,,} such that {T""!(z,)} is convergent. Let
T~ Y(2y,) — z, where ||z|; = 1. Since T is continuous, we then deduce
that z,, — T'(z) which then implies that T'(z) = 0. But T is a one-one
map and ||z||; = 1 implies that z # 0 which shows that T'(z) # O as
well. This gives us a contradiction. Hence T~! must also be continuous.

Step 3. Thus, whatever be the norm on V, the same map T is always an
isomorphism between ¢ and V which implies in turn that the identity
map on V, considered as a map of normed linear spaces when V is pro-
vided with two different norms, must be an isomorphism as well. Hence
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any two norms on V are equivalent. ll

Remark 2.3.2 We mentioned in Proposition 1.2.5 that a set in RN (or
CV) is compact if, and only if, it is closed and bounded. However, the
topology given there is the ‘usual’ topolgy, viz. that of £). It is for
this reason that we needed to give a separate argument to show that S
(which is also closed and bounded) is compact in ¢). However, thanks
to the preceding proposition, we now know that the topology is the same
for all the spaces Ei,v or, for any other norm on R¥ (respectively, CN)
and so a subset thereof will be compact if, and only if, it is bounded and
closed. B

Corollary 2.3.2 Any finite dimensional normed linear space is com-
plete. In particular, any finite dimensional subspace of a normed linear
space is closed. B

Example 2.3.10 Let f € C[0,1]. Define

1l = /0 F®)] dt.

It is simple to check that this defines a norm on C[0,1]. Consider the
sequence {f,} defined by

l1—nz, for0<cz
f"($)={ 0, for 1 <z

Clearly, ||fz]| = 1 for all n (where ||.|| denotes the usual ‘sup’ norm)
while |[f»]l1 = fol fn(t) dt = 1/2n which tends to zero as n tends to in-
finity. Thus it is clear that these two norms cannot be equivalent. Thus
in infinite dimensional spaces, two norms are not, in general, equivalent.
[ |

Since all norms on RY (respectively, CV) generate the same topology,
it is now clear that any matrix generates a continuous linear transforma-
tion, whatever the norm on that space may be. Thus, if Tisan N x N
matrix and if ||.|| is 2 norm on RV (respectively, C"), we can define

T.
I = sup T2l

2.3.5)
lzli<1, 220 1l (

or, via any of the other equivalent formulations as in Proposition 2.3.2.
Since the unit ball (and hence the unit sphere) is compact, the ‘sup’
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above is, in fact, a ‘max’. If T and S are matrices of order N, then TS
represents the composition of the corresponding linear transformations
and so we also have

ITS|| < [IT|.lIS]|- (2.3.6)

Let My denote the set of all matrices of order N with entries from the
corresponding field. This itself (under the operations of matrix addition
and scalar multiplication) is a vector space (of dimension N2). Any
norm on this space which satisfies (2.3.6) is called a matrix norm. If
such a norm were induced by a vector norm on R" (respectively, CN)
via (2.3.5), then we always have

I =1

for the identity matrix I.
In particular, for the vector norms ||.||, defining the spaces E;,V for
1 < p < 00, we denote the induced matrix norms by ||.||p,~-

Example 2.3.11 Since My is a vector space of dimension N? over the
corresponding field, we can string out its rows to form a vector of that
dimension and define the usual Euclidean norm. Thus, if T = (¢;;), then
define

1
2

N
ITle = | Y It5l?] = x(T*T).

i,j=1

This obviously defines a norm on Mpy. It is also a matrix norm. For
this, we only need to check the validity of (2.3.6). It T = (t;;) and
S = (s45), then

2
N N
ITSIE = Xij= |2k=1 tiksk:f'
N N 2 N 2
S iy (Ek:l |tk ) (Zk:l |Sk;] )

by the Cauchy-Schwarz inequality. Thus,we get
N N
ITSIE < > ltal* Y lskil® = ITIEISIE
ik=1 k.j=1

which shows that ||.||g is indeed a matrix norm. This is also known as
the Hilbert-Schmidt norm.
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Howewver, notice that this norm is not induced by any vector norm
when N > 2. Indeed to see this, observe that ||[I||z = VN #1. B

The proof of the Proposition 2.3.5 depended crucially on the fact
that the unit ball in a finite dimensional space is compact. In fact this
property characterizes finite dimensional spaces, which we now proceed
to show. We begin with a very useful technical result.

Let V be a normed linear space. If E C V, we define the distance of
a vector z € V from F as

= inf ||z —yl.
d(z, E) ;IEIEIITJ Y|

This is the same notion of the distance of a point from a subset in a
metric space if we look at V' as a metric space for the metric d(z,y) =

llz = yll

Lemma 2.3.1 (Riesz’ Lemma) Let V' be a normed linear space and
let W C V be a closed and proper subspace. Then, for every e > 0, we
can find a vector u € V (depending on €) such that

l| = 1 and d(u,W) > 1-—e¢.

Proof: Since W is a proper subspace, there exists v € V\W, so that
0 = d(v, W) > 0. Now, choose w € W such that

)
l1—¢

0 < |lv—w| £

Set v = (v — w)/||lv — w|| so that ||u| = 1. Let z € W be an arbitrary
element. Then

lu =2l = llv—(w+lv-wlll/llv-wl| 2 §/(8/(1-¢) = 1-¢

by the definition of § (since w + ||v — w||z € W) and the choice of w.
This completes the proof. B

Proposition 2.3.6 A normed linear space V' is finite dimensional if,
and only if, the closed unit ball in V, i.e. the set

B = {zeV|lel <1},

18 compact.
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Proof: Assume that V is finite dimensional, with dimension N. Let
T i f{v — V be the canonical mapping as defined in Proposition 2.3.5.
We have seen that T is an isomorphism.. It then follows that T1(B)
is bounded and closed in ¢} and so it is compact (cf. Remark 2.3.2).
Consequently B = T(T~!(B)) is compact as well.

Conversely, let us suppose that B is compact. Then, there exists a
positive integer n and points z; € B, 1 < ¢ < n, such that

B c UY,B(z:,1/2), (2.3.7)

where B(z;,1/2) = {z € V | ||z —z;|| < 1/2} is the open ball centered at
z; and of radius 1/2. Set W = span{zy,...,zn}. We claim that W =V
and this will prove that the dimension of V is less than, or equal to,
n and so V has to be finite dimensional. Assume the contrary. Then
W will be a proper and closed (since it is finite dimensional) subspace
of V. Now, by the preceding lemma of Riesz, we have the existence of
u € V such that ||u|| = 1 (and so u € B) and such that d(u, W) > 2/3.
In particular, it follows that « € B is such that ||u — ;|| > 2/3 for all
1 <% < n which contradicts (2.3.7). This completes the proof. B

Example 2.3.12 Consider the space f2 of all square summable se-
quences. Consider the sequence e; € {5 which has its i-th component
equal to unity and all other components equal to zero. Then, since
|les]|2 = 1, it belongs to the closed unit ball in that space. Now, if i # j,
we have

lle: —ejll2 = V2

and so the the sequence {e;} can never have a convergent subsequence.
Thus, in the infinite dimensional space ¢3, we directly see that the unit
ball is not sequentially compact and hence it is not compact. B

2.4 Applications to Differential Equations

One of the famous results in analysis is Banach’s contraction mapping
theorem (also known as Banach’s fixed point theorem), which is stated
as follows.

Theorem 2.4.1 (Contraction Mapping Theorem) Let (X,d) be a
complete metric space and let F' : X — X be a contraction, i.e. there
ezists a constant 0 < ¢ < 1 such that, for all x and y € X, we have

d(F(z), F(y)) < cd(z,y).
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Then F' has a unique fized point, i.e. there exists a unique point z* € X
such that -
Further, given any zg € X, the sequence {z,} defined by
Inyl = F(.’Bn), n >0,
converges to z*. B

Proof: Obviously, F' is continuous. Let zp € X and let the z, be as
defined in the statement of the theorem. Then, by hypothesis,

d(Znt1,2n) = d(F(zpn), F(Tn-1))
< cd(zn,zn-1)
and, prc_)ceeding recursively, we deduce that
d(Tp+1,Zn) < cd(z1,z).
Thus, if n < m, we have
d(Zn,Zm) < d(Tn,ZTnt1)+ d(Tnt1,Zns2) + -+ d(Tm—1,Tm)
< (+c 4+ ™ Nd(21, z0)

which can be made arbitrarily small for large n and m since the geometric
series 3 5o, cF is convergent for 0 < ¢ < 1. Thus {z,} is a Cauchy
sequence and, since X is complete, it converges to some z* € X. The
continuity of F' and the definition of the z,, now imply that z* = F(z*).

If there were two distinct fixed points of F', say, z and y, then, we
have that

0 < d(z,y) = d(F(z),F(y)) < cd(z,y)
which is a contradiction, since 0 < ¢ < 1. This completes the proof. B
We now give a well known application of this result.

Theorem 2.4.2 (Picard’s Theorem) Let R be a closed rectangle in
the plane R? whose sides are parallel to the coordinate azes. Let f : R —
R be a function which is continuous and which is such that gﬁ exists and
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is continuous on R. Let (zo,yo) be a point in the interior of R. Then,
there exists h > 0 such that the initial value problem

% = f(may)
y(zo) = %o

has a unique solution in the interval (zo — h,zo + h).

Proof: Since R is compact and f and % are continuous on R, there
exist K > 0 and M > 0 such that

|f(z,y)] £ K and ‘%;—(m,y)’ < M

for all (z,y) € R. Then, by the mean value theorem, it follows that, for
all (z,y1) and (z,y2) in R, we have

|f(zay1) - .f(ms'y2)' < Mlyl - y2|'

It is easy to see that a function y = y(z) is a solution of the initial
value problem above if, and only if, it satisfies the following:

y(z) = yo+ / mJ'(t,y(t)) dt

for all z.
Now, choose h > 0 such that Mh < 1. Consider the rectangle R’
defined as follows:

R = {(z,9) | |z - zo| < h, |y — yo| < Kh}.
By choosing h small enough, we can ensure that R’ C R. Now consider
X = {g€Clzog—h,z0+h| | |g(z) — yo| < Kh for all z}.

Then, we see that X is a closed subspace of C[zg — h,z¢ + h] and so is
a complete metric space (with the distance induced by the ‘sup-norm’).
Let g € X. Define

xz
Flo)(e) = wo+ | f(t.o(t) e
2o
for all z € [zg — h,zg + h]. Then, clearly, F(g) is continuous on that

interval and
|F(g)(z) —yo| £ Klz—=z0| < Kh.
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Further, if g; and g are in X, we have
|F(g1)(x) = Fg2)(=)] < [z 1f(t.91(£)) — f(t, 02(t))] dt

< Mg — g2ll|z — zo]

< Mhlg: — g

from which it follows that ||F'(g1) — F(g2)|| < Mh||g1 — g2|| which shows
that F' maps the complete metric space X into itself and is a contrac-
tion. Thus F' has a unique fixed point y € X which solves the initial
value problem. This completes the proof. B

We now prove a corollary of the contraction mapping theorem which
will also be useful in proving the existence of solutions to higher order
initial value problems.

Corollary 2.4.1 Let (X,d) be a complete metric space and let F : X —
X be a mapping such that, for some positive integer n, the map F™ :
X — X is a contraction. Then F has a unique fized point.

Proof: Since F™ : X — X is a contraction, this mapping has a unique
fixed point z* by the preceding theorem. Now,

F(z*) = F(F"(z")) = F''(z*) = F"(F(z")

and thus, F(z*) is also a fixed point for F. By the uniqueness of the
fixed point, it follows that

F(z*) = 2*

and so F' has a fixed point, viz. z*.
On the other hand, any fixed point y of F' is also a fixed point of F™
since

Fr(y) = F*Y(F(y) = F*l(y) = - = Fy) = v

Thus F' also must have a unique fixed point. B

Ekample 2.4.1 Consider the Volterra integral operator T : C[0,1] —
C[0,1] defined in Example 2.3.7, viz.

Tmm=4%mwwm
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where K : [0,1] x [0,1] — R is a continuous function. Consider the
following problem: find u € C[0, 1] such that

ala) = mlak fo " K(s, t)u(t) dt (2.4.1)

where w € C[0, 1] is a given function and A € R. The equation (2.4.1) is
called a Volterra integral equation. It is clear that a solution u of (2.4.1)
is a fixed point of the (affine linear) mapping F' : C[0,1] — C[0, 1] defined
by

F(u) = w+ AXT'(u).

Now, for any s € [0,1] and for any »; and ug € C[0, 1],

|[F(u1)(s) — F(ug)(s)] = [|Afg K(s,t)((u1(t) —ua(?)) dt|
< A&llur — uglls

where

K = e [01]|K(s ).

Hence, we get
[1F(u1) — Fu)l| < [Alljur — ugl|.
Again,

|[F2(u1)(s) — F?(ug)(s)| A fo K (s,t)(F(u1)(t) — F(ug)(t)) dt|
|A|NJ;0 |F'(u1)(t) — F(ug)(t)} dt
IA2K2]|uy — | fo t dt

A2 2I|u1 - ugll%

I IAIA

whence we deduce that

A2K2
1F2u) - Fu)ll < 2P g — .
Proceeding in this way, we get, for any positive integer n,
" |f\|"
[F™(u1) = F™(ug)|| < |1 — uall-

Since |A|"k™/n! is the general term of the convergent exponential series
exp(|A|x), it tends to zero as n tends to infinity and so, for sufficiently
large n, we have

|’\|ﬂ K‘ﬂ-

<1
n!
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and hence F™ is a contraction. Thus, by the preceding corollary, F' has a
unique fixed point. In other words, the Volterra integral equation (2.4.1)
has a unique solution. W

We now show that the study of certain differential equations can be
reduced to the study of the Volterra integral equation.
Consider the equation

z"(s) + p(s)a'(s) + a(s)z(s) = f(s) (2.4.2)

for s € (0,1), where p,q and f are given continuous functions. Consider
the initial conditions

z(0) = o and z'(0) = B (2.4.3)

where a and (3 are two given real numbers. Set u(s) = z”(s). Then,

e == B fo " u(t) dt.

Again,

z(s) = a+ [j/(t)dt
o+ Bs+ [3 [5u(r) dr dt
a+Bs+ [ [7u(r) dt dr
= a+fs+ [ u(r)(s—7) dr.

Thus, (2.4.2) can be written in the form (2.4.1) with
w(s) = f(s) - [Bp(s) + aq(s) + Bsq(s)] ,

Il

A=1and
K(s,t) = —[p(s) + (s —t)a(s)].
Hence, the initial value problem (2.4.2)-(2.4.3) has a unique solution.

2.5 Exercises

Note: In all the function spaces which occur below, it is assumed that
vector addition and scalar multiplication are defined pointwise.

2.1 Let f € C[0,1]. Define

It = ([ P at)’

—
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where 1 < p < 0o. Show that this defines a norm on C[0, 1].

2.2 Show that the space C[0, 1] with the norm ||.||; defined in the previ-
ous exercise is not complete by producing a Cauchy sequence which is
not convergent.

2.3 Let f € C(R). The support of f is the closure of the set of points
where f does not vanish. Let C.(R) denote the space of all continuous
real valued functions on R whose support is a compact subset of R. Show
that it is a normed linear space with the ‘sup-norm’ and that it is not
complete.

2.4 Let Co(R) denote the space of all continuous real valued functions
on R which vanish at infinity, i.e if f € Co(R), then, given any £ > 0,
there exists a compact subset K C R such that

[f(2)] < e

for all z € R\K. Show that Cy(R) is a Banach space with the ‘sup-
norm’. Show also that the space C.(R) defined in the previous exercise
is dense in Cp(R).

2.5 Let C'[0, 1] denote the space of all continuous real valued functions
on [0, 1] which are continuously differentiable on (0, 1) and whose deriva-
tives can be continuously extended to [0, 1]. For f € C![0, 1],define

Il = egﬂ[glflcl{lJf(if)l=Lf'(t)l}

where f’ denotes the derivative of f. Show that C![0,1] is a Banach
space for this norm. State and prove an analogous result for C¥[0, 1], the
space of all continuous real valued functions on [0, 1] which are k times
continuously differentiable on (0,1) and all those derivatives possessing
continuous extensions to [0, 1].

2.6 Let f € C'[0,1] and let f’ denote its derivative. Define

P
2

1
Il = ( / (If(t)l"’+|f’(t)l2)dt)

Show that ||.||; defines a norm on C'[0, 1]. If we define

= (| 1 lf’(t)lzdt)% ,
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does |.|; define a norm on C1[0, 1)?

2.7 Let
vV = {feco,1] | £(0) =0}

Show that |.|; defines a norm on V.

2.8 Let V' be a Banach space with norm ||.||y. Set
X = C([0,1];V)

to be the space of all continuous functions from [0, 1] into the space V.
Define, for f € X,

Iflx = sup 15y = ( max 17Ol )

te[0,1) te|

Show that ||.||x is well defined and that it defines a norm on X. Show
also that, under this norm, X is a Banach space.

2.9 Let V and W be normed linear spaces and let T : V — W be a
linear transformation. Show that 7T is continuous if, and only if, 7' maps
Cauchy sequences in V into Cauchy sequences in W'.

2.10 Let C'[0, 1] be endowed with the norm as in Exercise 2.5 above. Let
C[0,1] be endowed with the usual ‘sup-norm’. Show that 7" : C*[0,1] —
C[0,1] defined by T'(f) = f’ is a continuous linear transformation and
that ||T|| = 1.

2.11 Let C[0, 1] be endowed with its usual norm. For f € C[0, 1], define

t
T()O) = [ fe) ds, te o)
For every positive integer n, show that
I = 1/n!

2.12 Consider the space C.(R) defined in Exercise 2.3 above. For f €
C.(R), define

o) = [ " 1) dt.
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Show that ¢ is well defined and that it is a linear functional on this
space. Is it continuous?

2.13 Let {t;}], be given points in the closed interval [0, 1]. Let {w;},
be given real numbers. Let f € C[0,1]. Define

o(f) = ) wif(t:).
i=1

Show that ¢ defines a continuous linear functional on C[0, 1] and that

n
llell = lwil-
i=1

2.14 Let M,, denote the set of all n X n matrices with complex entries.
Let ||.||p,» denote the matrix norm induced by the vector norm |.||, on
C", for 1 < p < oo. If A = (aij) € My, show that

n
lAhr = I?J%n{glﬂijl}-
t=

State and prove an analogous result for ||A |0 n-

2.15 With the notations introduced in the preceding exercise, show that

[Allzn = Vp(A*A)

where p(T) denotes the spectral radius of a matrix T. (Hint: Use Propo-
sition 1.1.8). If A is a normal matrix, show that ||A|2, = p(A).

2.16 With the notations introduced above, show that, for any matrix
A € M, we have

Al < lAle < VallAllgn
where ||.||g is the norm introduced in Example 2.3.11.

2.17 If ||.|| defines a matrix norm on Mp, show that p(A) < ||A|| for all
AeM,.



2.5 Ezercises 61

2.18 Let A € M,, be invertible and let ||.|| be a matrix norm. The
condition number of A is defined as

cond(A) = [A[L|A™].

Show that

(a) cond(A) > 1 for any invertible matrix A € My;

(b) cond(aA) = cond(A) for any invertible matrix A and for any scalar
a#0; '

(c) for any invertible and normal matrix A,

max <i<n |Ai(A)]

condgn(A) = min; <i<n |Ai(A)]

where {)\;(A)}™; are the eigenvalues of A and conds ,(A) denotes the
condition number of A with respect to the norm ||.||2.

2.19 For what class of matrices does condy 5, attain its minimum value?
2.20 Let A = (a;;) be a 2 x 2 matrix which is invertible. Show that
condy 2(A) = o+ (0? —1)2

where .
_ Ei,j:l |‘1=‘:i|2
— 2|det(A)]

2.21 Let M,, be endowed with the topology generated by any matrix
norm. Let GL,(C) denote the set of all invertible matrices in M,. Show
that GL,(C) is an open and dense set. Is it connected?

2.22 (a) Let D, be the subset of all n x n matrices with distinct eigen-
values. Show that D, is dense in M,, (endowed with any matrix norm).

(b) Prove the Cayley-Hamilton theorem for any diagonalizable matrix:‘Every
n X n matrix satisfies its characteristic equation’.

(c) Deduce the Cayley-Hamilton theorem for all n x n matrices.

2.23 Let A € M,, be an invertible matrix. Show that

1
inf A-B = e,
B is singular | Iz A= ]l2,n
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2.24 Show that the set of all orthogonal matrices in the spage of all
n X n real matrices (endowed with any norm topology) is compact.

2.25 Let 1 < p < g < 00. Show that £, C £, and that, for all z € £,

lzllg < lizllp-

2.26 Consider an infinite matrix (ai;), %,j € N of scalars. Let z = (z;) €
5,1 < p < co. Define a sequence A(x) whose i-th component is given

by
o o]
D aijaj.
j=1

(a) Assume that

o0
a = squla,-jl < oo.
L

Show that A € £(¢;) and that ||A|| = .
(b) Assume that

o0
a = squm,-jl < oo.
7 =1
Show that A € L(£) and that | 4| = .

(c) Assume that
oo oo
a =33 layf* < co
=1 j=1

Show that A € £(¢) and that ||4]? < a.
(d) Assume that A € £(£,) and that A € L({;) where 1 < p < ¢ < oo.
Let 6 € (0,1). Set 7 = 6p + (1 — 6)q. Show that 4 € £(¢,) and that

lAllcey < AN, IAlLE -

2.27 Let {a;}$2, be a sequence of real numbers such that Y 22, |ax| <
oo. Consider the infinite lower triangular matrix

fag 0 0 ... ...]7
ay Qg 0
az a3 Qa ...

a3 az a
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Let A be the linear map defined on £3 by this matrix (as in the preceding
exercise). Show that A € £(¢3) and that

1Al < D lal.

k=0

2.28 Let V be a Banach space. Let {A4,} be a sequence of continuous
linear operators on V. Let

n
Sn = Y Ak
k=1

If {S,} is a convergent sequence in £(V'), we say that the series
(o o]
S 4,
k=1
is convergent and the limit of the sequence {S,} is called the sum of the

series. If 3 72 | || Ak|| < 0o, we say that the series Y po, A is absolutely
convergent. Show that any absolutely convergent series in convergent.

2.29 Let V be a Banach space. If A € L(V) is such that ||A|| < 1, show
that the series .
I+) Ak
k=1

is convergent and that its sum is (I — A)~L.

2.30 (a) Let V be a Banach space and let A € £(V). Show that the
series -
A
I+ kZ; T

is convergent. The sum is denoted exp(A).
(b) If A and B € L(V) are such that AB = BA, show that
exp(A + B) = exp(A)exp(B).

(c) Deduce that exp(A) is invertible for any A € L(V).

(d) Let
A= [3 'a‘”],
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where o and w are real numbers. Show that, for any f € R,

exp(tA) = e

ot | COSwWt —sinwi
sinwt coswt

2.31 Let V be a Banach space. Show that G, the set of invertible linear
operators in £(V) is an open subset of £(V) (endawed with its usual
norm topology).

2.32 (a) Define T': £3 — €3 and S : €3 — {3 by

T(x) = (0,z1,22,...)
S(x) = (z2,z3,..)

where z = (21,3, ...) € £2. Show that T and S define continuous linear
operators on ¢3 and that ST = I while T'S # I. (Thus, T and S, which
are called the right and left shift operators respectively, are not invert-
ible).

(b) If A is a continuous linear operator on ¢z such that |A - T| < 1,
show that A is also not invertible. Deduce that, in general, G, defined
in Exercise 2.31 above, is not dense in £(V), if V is infinite dimensional.
(Compare this with the finite dimensional case, cf. Exercise 2.21).

2.33 Let P denote the space of all polynomials in one variable with
real coefficients. Let p € P and let p = ) I, a;z*, where a; € R for
1 < i < n. Define

n
Iwm==zymlmdﬂww==gﬁﬁmL
i=
Show that ||.||; and ||.||e define norms on P and that they are not equiv-
alent.

2.34 Let V be a normed linear space and let W be a finite dimensional
(and hence, closed) subspace of V. Let z € V. Show that there exists
w € W such that

le+W| = |z +wl.

2.35 Let F; be Banach spaces for 1 < ¢ < 3. Let A € L(Ey,Es)and B €
L(E,, E3). Assume, further, if K is any bounded set in E;, then B(K)
is compact in E3. Finally, assume that z € E; — ||A(2)| g, + || B(z)|| s
defines a norm on E; which is equivalent to the norm |.||£,.
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(a) Show that Ker(A), the kernel of A, is finite dimensional.

(b) Let R(A) denote the range of A. Show that the canonical mapping
A: E;/(Ker(A)) — R(A) defined by A(z + Ker(A)) = A(z) for z € F,,
is an isomorphism.

(c) Deduce that R(A) is a closed subspace of Ej.

2.36 Let V and Y be normed linear spaces and let W be a dense subspace
of V. Let A€ L(W,Y). Show that there exists a unique continuous ex-
tension A € L(V,Y) (i.e. A|w A) and that ”A”C(Vy) = || Allzow,y)-

2.37 (Completion of a normed linear space) Let V' be a normed linear
space. We say that two Cauchy sequences {z,} and {y,} in V are equiv-
alent if ||z, — yn|| — 0 as n — oo.

(a) Show that this defines an equvalence relation. Let the set of all
equivalence classes be denoted by V.

(b) Let Z and 7 denote the equivalence classes of the Cauchy sequences
{z} and {y,} respectively. Let O denote the equivalence class of the
sequence all of whose terms are zero. Let o be a scalar. Define T + 3
to be the equivalence class of the sequence {z, + yn} and oZ to be that
of the sequence {az,}. Show that these operations are well defined and
make V a vector space.

(c) With the above notations, define ||Z||j7 = limy—,o0 ||Zn|lv. Show that
this is well defined and that it defines a norm on V.

(d) Define i : V — V by setting i(z) to be the equivalence class of the
sequence all of whose terms are equal to z, for any z € V. Show that
i € L(V,V) and that it is an injection. Show also that the ima.ge i(V) is
dense in V.

(e) Show that V is complete (and this space is called the completion of
V). (Hint: Given a Cauchy sequence {Z™} in V, choose z, € V such
that [|[Z™) — i(z,)|li7 < 1/n. Show that {z,} is a Cauchy sequence in V
and if 7 denotes its equivalence class, show that Z™ — Z in V)

2.38 Let V and W be normed linear spaces and let U C V be an open
subset. Let J : U — W be a mapping. We say that J is (Fréchet)
differentiable at u € U if there exists T' € L(V, W) such that

o W@+ h) = J@) TR _
pd A
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(Equivalently,

_ eI _
J(u+h) = J(u) —T(h) = e(h), lim = %)

(a) If such a T exists, show that it is unique. (We say that T is the
(Fréchet) derivative of J at u € U and write T = J'(u).)
(b) If J is differentiable at u € U, show that J is contimuous at u € U.

2.39 Let V and W be normed linear spaces and let U C V be an open
subset. Let J : U — W be a mapping. We say that J is Gaéteau
differentiable at u € U along a vector w € V' if

lim %(J(u +tv) — J(w)

exists. (We call the limit the Gdteau derivative of J at u along w.)

If J is Fréchet differentiable at u € U, show that it is Gateau differ-
entiable at u along any vector w € V and that the corresponding Gateau
derivative is given by J'(u)w.

2.40 Let V and W be normed linear spaces and let A € L(V,W). Let
wo € W be given. define J: V — W by J(u) = A(u) + wg. Show that
J is differentiable at every u € V and that J'(u) = A.

2.41 Let U = GL,(C) C M, (cf. Exercise 2.21). Define J(A) = A~}
for A € U. Show that J is differentiable at every A € U and that, if
H € M,,, we have

J(A)H) = —A"'HA™L
2.42 (a) Let A € GL,(C). Show that
det(I+ A) = 1+tr(A)+e(A)

where ()
€
lim =
A-0 ||A]

0

(for any matrix norm).
(b) Deduce that if we define J(A) = det(A) for A € GL,(C), then J is
differentiable at all such A and that, if H € M,,, then

J(A)(H) = det(A)tr(A~TH).
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2.43 (Chain Rule) Let V,W and Z be normed linear spaces and let
f:V—>W and g: W - Z be mappings such that f is differentiable at
a point v € V and g is differentiable at f(v) = w € W. Show that the
map go f: V — Z is differentiable at v € V and that

(go f)(v) = g(f(v))o f'(v).

2.44 (a) Let V be a real normed linear space and let J : V — R be a
given mapping. A subset K of V is said to be convez if, for every u and
v € K and for every t € [0, 1], we have that

tu+ (1 —t)v € K.

Let K C V be a closed convex set. Assume that J attains its minimum
over K at u € K. If J is differentiable at u, then show that

J(u)(v—u) =2 0

for every v € K.
(b) Let K = V. If J attains its minimum at « € V and if J is differen-
tiable at u, show that J'(u) = 0.

2.45 Let V be a real normed linear space. A mapping J : V — R is said
to be convez if, for every u and v € V and for every ¢ € [0, 1], we have

J(tu+ (1 -t)w) < tJ(u)+ (1 -t)J(v).
(a) If J : V — R is convex and differentiable at every point, show that
J(w) = J(u) > J(u)(v—u)

foreveryuand v e V.
(b) Let J : V — R be convex and differentiable at every point of V. Let
K C V be a closed convex set. Let © € K be such that

J'wv-u) >0
for every v € K. Show that

J(u) = %}I{l J(v).

(c¢) If J: V — R is convex and differentiable at every point of V, and if
u € V is such that J'(u) = 0, show that J attains its minimum (over all
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of V) at u.

Remark 2.5.1 Exercise 2.44 gave necessary conditions for a differen-
tiable function J to attain a minimum at a point u. The preceding
exercise shows that these conditions are also sufficient in the case of
convex functions.

2.46 Let m > n. Let A be an m X n matrix and let b € R™. Consider
the linear system of equations

Ax = b.

This system may not have a solution since the number of equations
exceeds the number of unknowns. A least squares approximate solution
is a vector xg € R" such that

l1AXo —bllz = min [|Ax —b2.
Show that such a solution must satisfy the linear system
A*Axy = A'b

and that this system has a unique solution if the rank of A is n.



